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Research Centre for High Energy Physics, School of Physics, University of Melbourne, 
Parkville 3052. Australia 

Received 23 March 1992 

Abstract. The existence of a symmetry of the Dirac equation for a massless particle in a 
scalar field is demonstrated, and its effect on the bandstructure of certain arrays of scalar 
8-function potentials is investigated. The implications of the symmetry for more general 
scalar potentials are also discussed. 

Recentiy [I, ij we obtained conditions for the existence of the band gaps of a massive 
relativistic particle in a one-dimensional disordered array of Lorentz scalar 8-function 
potentials possessing short-range order. For this array the distances between the 
&function potentials of strength A were assumed to be independent random vanables 
distributed in the interval [ I ,  I + d ] .  The energy gap conditions are a pair of inequalities 
for the relativistic momentum k (in units h = c = l), and given by 

nr - rq+l s kl s n r  + vq-> - kd ( 1 )  

for n = 1,2 ,3 ,  . . . and A > 0. Similarly for A < 0 we obtained 

nr- rq-, s kl s n r +  rq,, - kd (2) 

where 

k 
E + m  

r = -  ( ' I;') and q, =- Pr arctan r tanh - 
2 
r (3) 

for a particle of energy E and mass m. 
An intriguing feature of the above conditions occurs in the massless limit, where 

r = 1 and consequently qtt = q-,  . In this limit we observe that the conditions specifying 
the gap structure, (1) and (2), become identical; the resulting band structure depends 
only on the magnitude of the &-function strength and is independent of its sign. 
Furthermore, for the case of an exactly periodic lattice ( d  = 0), these gaps form regions 
which are symmetrical about the values k / =  n v .  

These two features suggest the existence of an underlying symmetry of the Dirac 
equation for a massless particle in a scalar field. Indeed such a symmetry does exist, 
a fact which has sigiiificaiii iiiipkcatiofi~ f ~ i  the kiiid3tiiiCCiie of a spiei-il of such 
particles in a periodic scalar potential. It is the purpose of this letter to determine the 
origin of this symmetry and from this basis to investigate in detail its consequences 
for the bandstructure of the panicle for an array of scalar 8-function potentials. Its 
consequences for more general scalar periodic structures will also be discussed. 
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The well known chiral symmetry of the Dirac equation occurs because the Dirac 
equation is invariant under the transformation 

in the massless limit and this implies the existence of a corresponding conserved 
1 current, the axial vector current. Since a particle in a scalar potential has, in a sense, 

a position dependent mass, this result is of use only for a massless particle in a vector 
(i.e. electrostatic type) potential. In one dimension this symmetry implies conservation 
of the direction of motion of a particle [3]. This occurs because a reversal of momentum 
of the massless particle due to  its interaction with a vector field would require a change 
in its helicity and this is forbidden by the symmetry (remember spin is not well defined 
in one dimension). 

For a massless particle in a scalar field a similar, although less obvious, symmetry 
exists. To see how this symmetry arises consider the three-dimensional Dirac equation 
for a massless particle in a scalar field S(x) 

which we note is invariant under the transformations 

?(x )  + e"'5~(x) (4) 

[a .p+PS(x)]Y(x)  = E Y ( x )  ( 5 )  

W X ) '  r m x )  and S(x)+-S(x). ( 6 )  
This is just the symmetry we are seeking. 

case the symmetry transformation takes the form 

(In one dimension these become Y ( x ) +  a,.U(x) and S(x)+ - S ( x ) . )  
In the Dirac-Pauli representation the ys operator interchanges the upper and lower 

components of the wavefunction which, combined with the changing of the sign of 
the potential, suggests that the massless particle is unable to differentiate the sign of 
the potential. To examine this situation more closely we shall examine in detail a 
simple one-dimensional system. 

In order to describe a relativistic particle in one dimension a two-component spinor 
wavefunction is required. In the Dirac-Pauli [41 representation in a field-free region 
the wavefunction may be written as 

In passing we note there is still a symmetry in the massive particle case, in which 

W X ) +  r5Wx) and S ( x ) + - S ( x ) - Z m .  (7) 

In many circumstances the lower component is much smaller than the upper, and 
many authors [5] have utilized this fact to neglect one of the components of the spinor, 
thus obtaining reasonable approximations to the relativistic system which differ mar- 
ginally from those applicable to  the single component non-relativistic systems. 
However, in the massless limit, both components are of the same order and a complete 
two-component description is necessary in any analysis. 

iY { ( x )  + ( k  + S ( x ) ) Y , ( x )  = 0 

The two components Y , ( x )  and 'P , (x )  satisfy 
i T ; ( x ) + ( k - S ( x ) ) Y , ( x )  = O  (9) 

which, upon the elimination of the appropriate components, can be rewritten as 

Y Y ( x ) -  S'(x) Y : ( x )  + ( k 2  - S ' ( x ) ) Y , ( x )  = 0 
k + S ( x )  

Y ; ( x ) + -  s(') ' u ; ( x ) +  ( k 2 -  S 2 ( x ) ) Y , ( x )  = 0. 
k - S ( x )  
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These equations appear to be uncoupled, but that is not the case as we must find 

Examining these equations we verify that they remain invariant under the trans- 
solutions which are related through (9). 

formations 

'P,(x)C*'Uz(x) and S(x)C*-S(x). (11 )  

This verifies the symmetry derived above, which may be interpreted as implying that, 
LI gir=;ri acafial p r c c r r r a i ,  LIIG w w c i  ~ u m p u n e u ~ s  U, m e  wavauncuun expeiicrtcc uic 

opposite potential to that experienced by the upper components. Coupled with the 
necessity of a two-component description of the wavefunction this essentially implies 
that a massless particle is 'blind' to the sign of the scalar field. A direct result of this 
feature is that an infinite negative scalar field should confine a massless particle as 
effectively as an infinite positive scalar field, a property of the scalar potential which 
has been observed previously in the literature 161. 

The above symmetry of the Dirac equation for the scalar field is obviously respon- 
sible for the results found for the band gap [1,2], reviewed above. To show exactly 
how this symmetry manifests itself in the determination of the band gap structure we 
recall the origin of the band gaps themselves. 

In the non-relativistic domain Bragg reflection in the lattice results in the formation 
of standing waves of either even or odd parity (when the origin is located at one of 
the 8-function sites and, as kl = na, this implies that the odd wavefunction has its 
nodes occur exactly at the positions of the &function potentials comprising the array). 
A consequence of this property is that the odd wavefunction cannot interact with the 
lattice; its energy remains unaltered irrespective of the strength of the potential. ( I t  is 
for this reason that the values k l=  na always form one of the band edges [7] in the 
non-relativistic system.) Conversely the even wavefunction must have its antinodes 

be raised in energy due to its interaction with the lattice for A > 0 (or lowered in energy 
for A < 0). The difference between this value and kl= na then constitutes the energy gap. 

In contrast, in the relativistic domain the two-component structure of the wavefuoc- 
tion ensures that if one component of the wavefunction has a node at one point then 
the other component must have an antinode at the same point (as is obvious from 
(9)). Therefore, in the relativistic system both the upper and lower band edges must 
be functions of the 8-function strength, a feature which is seen in our results. To see 
this explicitly we must consider the two-component structure of the wavefunctions. 

We begin by defining as even (odd) the wavefunction "(x) where 'P,(x) is even 
(odd) and hence 'U,(x) is necessarily odd (even). For an even wavefunction, the upper 
component 'Pl(x) peaks at the position of the 8-function potential and consequently 
we would expect the energy of this state to increase for A > 0, in analogy with the 
non-relativistic result, while the lower component 'U&) vanishes at the position of 
the &functions, and thus has no interaction with the lattice. Considering now the odd 
wavefunction we observe that it is the lower component '4',(x) that now interacts with 
the lattice whilst the upper component V,(x) is oblivious to its presence. Since in the 
massless limit Y,(x)  sees the negative of the potential experienced by 'Pl(x) the energy 
of this state should be lowered by an amount equivalent to  that by which the even 
wavefunction was raised in energy. Thus the band gaps are symmetrical about k l=  n a .  

For A < O  we can show in an analogous fashion that the opposite situation to that 
described above would apply with the even component of V,(x) (Yz (x )  odd) forming 
the lower gap edge and the odd component of V,(x) ('P,(x) even) forming the upper 

CA-"  ":..̂ .. """1 ----a-...:", .L̂  I ~ ~_.. ..-.L. c~~~-_.:._ : ̂_ ^ ^  .L^ 

coincide with the &function positions; thus implying !h._t the energy of !hi5 Etate wi!! 
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gap edge. This interchange of the upper and lower components of the wavefunction 
as the potential changes sign is thus the major effect arising from the symmetry 
mentioned above. Thus the band gaps must be independent of the sign of the S-function 
potential. 

These results lead us to ask the question: ‘what happens to the gap structure for a 
periodic array of S-function potentials of alternating strengths A and -A? 

To examine this case in detail we consider a potential of the form 
m 

S(x) = A 1 [ s ( x - n I ) - a s ( x - [ n  -+]I)] (12) 
n = ,  

where a E [-1,1]. We note that S(x+ I) = S(x). 

regions 
For this potential we can show that the energy gaps for a massless particle are the 

2na-2 Pr arctan(p,) c k l s  2 n a + 2  Pr arctan(p,) 

(2n + 1 ) a  -2 Pr arctan(p,) s k l s  (2n + l ) lr+2 Pr arctan(p,) 
(13) 

for n = 1,2,3,. . . where 

cosh(a + 1)A - 1 
cosh(a - l ) A + l ’  dp (14) and P2 = 

cosh(a - 1)A - 1 
” = d /  cosh(a + 1)A + 1 

The three cases of interest are treated below. 
(i) a = 0. Then pi = p2 = tanh(A/2) and we find 

n a  - 2 Pr arctan tanh - S kf S nm + 2 Pr arctan tanh - ( 1 5 )  ( 3 ( 3 
in agreement with (1) for m = d = 0. 

(ii) a = -1. Then pi = sinh A and p2 = 0 hence the gaps at k l =  (Zn + 1)lr disappear. 
(Indeed it can be shown [3] that for these energies the transmission coefficient is unity 
and hence no reflection occurs and energy gaps cannot form.) This result is not 
surprising since the periodicity of the potential in (12) is now S(x+l/2) = S(x) and 
as arctan(sin A )  = 2 arctan(tanh[A/2]) we find the energy gaps to be now given by (15) 
with I +  1/2 in accordance with these observations. 

(iii) a = 1. Then p, = 0 and p2 = sinh A and hence the gaps at k l =  Znlr disappear. 
(The transmission coefficient is unity for these energies as well [3].) This is a surprising 
result since the periodicity of the potential is still S(x+ I) = S(x). However, we do 
note that this potential also satisfies the condition 

The existence of this condition, combined with the inability of the massless particle 
to determine the sign of the potential, suggests that a pseudo-periodicity of length 1/2 
exists in the array and that this is responsible for the disappearance of the gaps at the 
values k l =  2na. 

To elucidate this point we note that the phase of a relativistic solution of the Dirac 
equation may be defined by [2] 
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from which we can show that for a scalar &function of strength A the change in phase 
over the 8-function is given by [ I ]  

-tanh A cos 24 
l-tanhAsin2+ 

9(+) = Pr arctan 

for a phase 4 immediately prior to the S-function. From this result we can show that 
the following relationship exists between the phase change over a positive S-function 
potential and that for a negative &function potential, 

The net effect on the phase of a 8-function potential of strength -1Al is thus 
equivalent to that of a 8-function potential of strength IAI, combined with the addition 
of nii to the phase. The appropriate energies ior Btagg reflection for the array for 
a = 1 must then be shifted by this amount and consequently are given by the energies 
(k1/2)=nn+.rr/2or k l=(2n+l )n ,as i s found.  

The origin of this phase shift of n / 2  can also be simply understood. As stated 
previously when the potential changes sign the values of Y , ( x )  and q2(x) are inter- 
changed (i.e. Y, ,2 (x )+ 'P2 , , (x )  for s ( ~ ) +  -S(x) due to the form of the equations 
cvupiirig Y ~ ( L J  aiiu I Y ~ \ * ,  111 ('11. riuiii LUG i~eraiiunsnrp Lor inc pnaac In ( i , j  iur inc 

massless case (i.e. r = l), we observe that since tan(4 + n/2)  = -cot 4, this interchange 
implies 4 + 4 + n / 2  as required. 

Whilst it is well known that a symmetry associated with invariance under chiral 
transformations exists in systems comprising massless fermions interacting via external 
vector fields no such symmetry has been noted for the analogous scalar system, a 

Our initial interest in the existence of this symmetry was first kindled during the 
analysis of some anomalous results from a simple one-dimensional nuclear model we 
had developed [3] which comprised an ordered array of scalar &function potentials 
with confining boundary conditions. In this model the scalar 8-function potentials 
were utilized to model the barrier to tunnelling of the massless quarks within the 
nucleus, a feature of the model which had been shown to produce significant binding 
energies in a previous treatment incorporating the Klein-Gordon equation [8]. In 
contrast in our model using the Dirac equation such an arrangement was shown to be 
exactly unbound; the binding produced was zero irrespective of the 8-function potential 
strengths. 

Similarly, the occurrence of further anomalous results in 3ur analysis of the 
bandstructure for arrays of scalar 8-function potentials indicated the existence of such 
a scalar symmetry, the origin of which we have detailed above. 

The most visible consequence that we have thus far observed as originating from 
this symmetry is the complete disappearance of every second energy gap in the 
alternating array of scalar &function potentials. This effect, however, is not merely 
confined to such an analytically simple system as that involving the 8-function poten- 
tials. In fact any potential which satisfies (16) should exhibit this pseudo-periodicity 
and its consequent halving of the bandstructure. 

To investigate this effect we have studied the bandstructure that occurs for a scalar 
cosine potential, one of the simpler potentials displaying this periodicity. For this 
potential we found [lo] that the pseudo-periodicity of the potential causes the disap- 
pearance of the alternate band gaps exactly as expected. 

._.._I:__ .*, I__\  ̂..A .TI I _ _ \  :.. ,n\, I?_ .̂.. . . . . . : .~ . -L-  c.... -L... :- ,.-, C...L. 

scbject nf interes! dce !D its *pp!icatia!? i" Enme mnde!s nf the ncc!eus [8,0!. 
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The properties described above suggest that, while the consequences of this sym- 
metry may be of less practical interest than those associated with the chiral symmetry, 
they are no less fascinating. 

This work was supported in part by the Australian Research Council. GJC would like 
to acknowledge the support of a Melbourne University Postgraduate Scholarship. 
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